Publications
7. D. Appelö, T. Hagstrom and Y.-M. Law, Energy-conserving Hermite methods for Maxwell’s equations, arXiv:2401.12043, accepted in Communications on Applied Mathematics and Computation, 2024.
6. Y.-M. Law and D. Appelö, The Hermite-Taylor correction function method for Maxwell’s equations, Communications on Applied Mathematics and Computation, 2023.
5. Y.-M. Law and J.-C. Nave, High-order FDTD schemes for Maxwell’s interface problems with discontinuous coefficients and complex interfaces based on the correction function method, Journal of Scientific Computing, 91 (26), 2022.
4. Y.-M. Law and J.-C. Nave, FDTD schemes for Maxwell’s equations with embedded perfect electric conductors based on the correction function method, Journal of Scientific Computing, 88 (72), 2021.
3. Y.-M. Law, A. N. Marques and J.-C. Nave, Treatment of complex interfaces for Maxwell’s equations with continuous coefficients using the correction function method, Journal of Scientific Computing, 82 (56), 2020.
2. Y.-M. Law and M. Laforest, A nonlinear relaxation formulation of the p-curl problem modelling high-temperature superconductors: a modified Yee’s scheme, Journal of Computational Physics, 378, 591-614, 2019.
1. Y.-M. Law, D. Tageddine and S. Dufour, 3-D numerical modeling for the magnetization of superconductors using a local discontinuous Galerkin finite element method, IEEE Transaction on Magnetics, 55 (8), 2019.
Preprint
1. Y.-M. Law, D. Appelö and T. Hagstrom, The Hermite-Taylor correction function method for embedded boundary and Maxwell’s interface problems, arXiv:2301.01752, submitted, 2023.